Improved Local Search Algorithms with Multi-Cycle Reduction for Minimum Concave Cost Network Flow Problems

نویسندگان

  • Ruibiao Qiu
  • Jon Turner
چکیده

The minimum concave cost network flow problem (MCCNFP) has many applications in areas such as telecommunication network design, facility location, production and inventory planning, and traffic scheduling and control. However, it is a well known NP-hard problem, and all existing search based exact algorithms are not practical for networks with even moderate numbers of vertices. Therefore, the research community also focuses on approximation algorithms to tackle the problems in practice. In this paper, we present an improved local search algorithm for the minimum concave cost network flow problem based on multi-cycle reduction. The original cycle reduction local search algorithm as proposed by Gallo and Sodini considers only negative cost single cycles; however, we find that such cycle reduction is not complete. We show that negative cost multi-cycles may exist in a network with concave edge costs that has no negative cost cycles, and an existing flow can be reduced to an adjacent neighboring flow with lower cost by redirecting flows along these negative multi-cycles. In this paper, we present an improved local search algorithm based on multi-cycle reduction.We evaluate our proposed algorithm in networks with a simple concave edge cost in different topologies and sizes. The experimental results show that the original cycle reduction algorithms can improve the quality of solutions obtained from a simple minimum cost augmentation approximation heuristic (LDF), and that a multi-cycle Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Improved Local Search Algorithm with Multi-Cycle Reduction for Minimum Concave Cost Network Flow Problems Ruibiao Qiu and Jon Turner WUCSE-2004-74 December 9, 2004 Department of Computer Science and Engineering Campus Box 1045 Washington University One Brookings Drive St. Louis, MO 63130-4899, USA Abstract The minimum concave cost network flow problem (MCCNFP) has many applications in areas such as telecommunication network design, facility location, production and inventory planning, and traffic scheduling and control. However, it is a well known NP-hard problem, and all existing search based exact algorithms are not practical for networks with even moderate numbers of vertices. Therefore, the research community also focuses on approximation algorithms to tackle the problems in practice. In this paper, we present an improved local search algorithm for the minimum concave cost network flow problem based on multi-cycle reduction. The original cycle reduction local search algorithm as proposed by Gallo and Sodini considers only negative cost single cycles; however, we find that such cycle reduction is not complete. We show that negative cost multi-cycles may exist in a network with concave edge costs that has no negative cost cycles, and an existing flow can be reduced to an adjacent neighboring flow with lower cost by redirecting flows along these negative multi-cycles. In this paper, we present an improved local search algorithm based on multi-cycle reduction. We evaluate our proposed algorithm in networks with a simple concave edge cost in different topologies and sizes. The experimental results show that the original cycle reduction algorithms can improve the quality of solutions obtained from a simple minimum cost augmentation approximation heuristic (LDF), and that a multi-cycle reduction yields more improvements; however, it reaches a point of diminished returns when we attempt to reduce more than bicycles.The minimum concave cost network flow problem (MCCNFP) has many applications in areas such as telecommunication network design, facility location, production and inventory planning, and traffic scheduling and control. However, it is a well known NP-hard problem, and all existing search based exact algorithms are not practical for networks with even moderate numbers of vertices. Therefore, the research community also focuses on approximation algorithms to tackle the problems in practice. In this paper, we present an improved local search algorithm for the minimum concave cost network flow problem based on multi-cycle reduction. The original cycle reduction local search algorithm as proposed by Gallo and Sodini considers only negative cost single cycles; however, we find that such cycle reduction is not complete. We show that negative cost multi-cycles may exist in a network with concave edge costs that has no negative cost cycles, and an existing flow can be reduced to an adjacent neighboring flow with lower cost by redirecting flows along these negative multi-cycles. In this paper, we present an improved local search algorithm based on multi-cycle reduction. We evaluate our proposed algorithm in networks with a simple concave edge cost in different topologies and sizes. The experimental results show that the original cycle reduction algorithms can improve the quality of solutions obtained from a simple minimum cost augmentation approximation heuristic (LDF), and that a multi-cycle reduction yields more improvements; however, it reaches a point of diminished returns when we attempt to reduce more than bicycles. Improved Local Search Algorithm with Multi-Cycle Reduction for Minimum Concave Cost Network Flow Problems Ruibiao Qiu Jonathan S. Turner {ruibiao,jst}@arl.wustl.edu Applied Research Laboratory Department of Computer Science and Engineering Washington University St. Louis, MO 63130, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Genetic Algorithm Approach for Concave Minimum Cost Network Flow Problems

This paper presents a hybrid approach combining a genetic algorithm with a local search for the single-source uncapacitated minimum cost network flow problem with general concave costs. This class of problems is known to be NP-Hard and therefore, exact methods to solve this class of problems in their full generality are only able to address small size instances. Computational experiments were p...

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

Optimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm

Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...

متن کامل

Heuristic solutions for general concave minimum cost network flow problems

We address the single-source uncapacitated minimum cost network flow problem with general concave cost functions. Exact methods to solve this class of problems in their full generality are only able to address small to medium size instances, since this class of problems is known to be NP-Hard. Therefore, approximate methods are more suitable. In this work, we present a hybrid approach combining...

متن کامل

Ant Colony Optimization Algorithms to solve Nonlinear Network Flow Problems

In this work, we address two nonlinear network flow problems: the Single Source Uncapacitated Minimum Cost Network Flow Problem (SSU MCNFP) and the Hop-Constrained Minimum cost Flow Spanning Tree (HMFST) problem, both with concave cost functions. We propose two hybrid heuristics, HACO1 and HACO2, which are based on Ant Colony Optimization (ACO) and on Local Search (LS), to, respectively, solve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016